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ABSTRACT 

The paper presents the application of Interval Mathematics as 
a new method to, rigorously, address uncertainties associated 
with capacitor installation in distribution feeders. While 
several methods exist to determine optimal capacitor sizes and 
locations in distribution feeders, these methods usually require 
data which may be uncertain in nature. To account for such 
uncertainties a heuristic method coupled with interval 
mathematics is developed with the aim of maximizing the cost 
saving by placing single node-located capacitors at a selected 
sequence of nodes. The method determines a set of nodes to be 
compensated with their associated interval capacitor sizes; 
followed by a local search loop, at any one node, to determine 
the final standard capacitor size at this node. While catering 
for uncertainties, the method also offers utilities with 
alternatives for selecting the standard capacitor sizes to be 
used and the associated costs to be saved. This should enable 
utilities to make informed decisions regarding installing 
capacitors for reactive power compensation in their 
distribution systems. A procedure is devised in order to 
produce sharp bounds of the interval outcomes. Successful 
implementation of the proposed method is described using a 
nine buses example distribution feeder. 

INTRODUCTION 

  Energy management through reactive power compensation on 
distribution systems has, recently, emerged as a topic of current 
research interest [1-4]. Reactive power flow in a distribution 
system produces losses and results in increased rating for the 
system components. Shunt capacitors are usually installed to 
reduce these power losses, increase the released thermal 
capacities of the lines and transformers and improve the system 
voltage profile. 
  However, the data employed in the reactive power 
compensation analysis is usually derived from many sources 
with varying degrees of accuracy. Accounting for such 
uncertainties is necessary to produce realistic results which 
utilities can employ to make informed decisions regarding 
reactive power compensation in their distribution systems. 
  Uncertainties can be looked upon as a condition in which the 
possibility of errors exists as a result of having less than total 
information about the surrounding environment. They are 
beyond the utility’s foreknowledge or control. In a distribution 
system, the reactive load is always varying and it is not a 
realistic proposition to determine capacitor sizes and locations 
based on an average of the reactive loads as even this number is 
subject to change as the load  varies. In addition, many of the 
reactive power compensation techniques involves the 
optimization of a cost function which require parameters such as 
the cost of the capacitors, the cost of energy and the cost of the 

peak power savings to which only an estimation ( single-point) 
without exact certainty can be obtained [3]. Consequently, the 
validity of the results generated is questionable.  
    Interval mathematics provides a powerful tool for the 
implementation and extension of the “unknown but bounded” 
concept [5,6]. Using interval analysis, there is no need for many 
simulation runs as the total variation of the solution considers 
the simultaneous variations of all inputs in a single run. In this 
form of mathematics, interval numbers are used instead of single 
point numbers.    
   This paper presents an interval method coupled with a 
heuristic technique for maximizing the cost saving; by placing 
optimal capacitors at proper locations in interval format. 
Uncertainties in the parameters are integrated into the analysis, 
as interval numbers, to allocate, sequentially, the capacitors 
according to the upper limit of the maximum interval saving 
outcome. Once locations are identified, the standard capacitor 
size, at a selected location, is determined through the 
optimization of the cost saving function. The method offers 
utilities with alternatives for selecting the standard capacitor 
sizes to be used and the associated costs to be saved. To 
overcome the difficulty of conservative bounds, a procedure is 
devised in order to produce sharp bounds of the interval 
outcomes and consequently enhances the decision making 
process. The proposed method is tested on a nine-bus 
distribution feeder and encouraging results are reported.  

THE GOVERNING EQUATIONS 

  In order to account for uncertainties associated with the 
capacitors sizing and location problem, the maximum cost 
saving analysis is followed [4]. The input parameters’ 
uncertainties, in interval format, are integrated into the 
governing equations as follows: 

2

1

n

i i
i

P I R
=

= ∑        (1) 

where P is the total active power loss for a distribution system 
with n branches, Ii and Ri are the current magnitude and 
resistance, respectively of branch i. The branch current can be 
obtained from the load flow solution. This current has two 
components; active (Ia) and reactive (Ir). Thus, the system losses 
can be written as 
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If a capacitor of current Ick is placed at a node k, the system 
losses are 
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Subtracting (3) from (2), the loss reduction ∆Pk is 
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Assuming there is no significant change in the node voltage 
after setting the capacitor and using the cost function equation, 
the cost reduction can be defined as 

p e ck ckS K P K E K Q∆ = ∆ + ∆ −                    (5) 

where Kp is the annual cost in $/KW and Kck is the annual cost 
in $/KVAr for the capacitor placed at node k both represented in 
interval format. Ke is the interval annual cost of KWh losses in 
$/KWh with the energy losses, defined over a time period T, 
using (4) as 
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where Lf is the interval load factor. Qck is the capacitor size at 
node k and equals 

ck ck kQ I V=            (7) 
Substituting for (4), (6-7) in (5), we get 
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The value of Ick that maximizes the cost reduction is obtained by 
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From (9), we get the interval Ick as 
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Substituting from (11) into (8) and (4), we obtain the interval 
maximum net saving and the corresponding interval loss 
reduction as follows: 
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 Using (7) and (11-13), respectively, we can calculate the size of 
the capacitor used at a certain node k that maximizes the total 
system cost reduction and we can compute the interval 
maximum cost reduction as well as the corresponding interval 
loss reduction. 

INTERVAL MATHEMATICS 

  Interval mathematics provides a useful tool in determining the 
effects of uncertainty in parameters used in a computation. In 
this form of mathematics, interval numbers are used instead of 
ordinary single point numbers. An interval number is defined as 
an ordered pair of real numbers representing the lower and 
upper bounds of the parameter range [6]. An interval number 
can then be formally defined as follows; [a, b], where a ≤ b.  
  Given two interval numbers, [a, b] and [c, d], the rules for 
interval addition, subtraction, multiplication, and division are as 
follows: 
[ , ] [ , ] [ , ]
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Implementing interval analysis techniques confronts some 
obstacles because its algebraic structure is unlike that of 
common single point arithmetic. Accordingly, interval 
computations may produce wide bounds.  The bounds of the 
resulting interval computations may depend on the calculation 
procedure as well as the input parameters. So, an effort has to be 
made to reduce the width of the resulting interval bounds. 
Normally, the approach to producing better bounds has been to 
rearrange the expression to reduce the appearance of the interval 
parameters [6].    

UNCERTAINTIES IN THE CAPACITOR SIZING AND 
PLACEMENT PROBLEM  

  Inspection of equations (7-13) reveals that it is likely that 
values for Kp, Ke, Kck and Lf can not be obtained with absolute 
certainty. For instance, Kp and Ke , the costs for the peak power 
and energy losses respectively can be calculated in many ways 
but it is probably known that there is an upper and lower bound 
for these costs which can be attributed with more certainty than 
a single- point value for each cost [3]. Likewise, for the reactive 
load factor Lf a range of values can also be determined. Thus by 
using interval mathematics, the uncertainties associated with the 
capacitor allocation technique could be more effectively 
understood if these input parameters were treated as interval 
numbers whose ranges contain the uncertainties in those 
parameters. The resulting computations, carried out entirely in 
interval form, would then literally carry the uncertainties 
associated with the data through the analysis. Likewise, the final 
outcome in interval form would contain all possible solutions 
due to the variations in input parameters. 

ALGORITHM 

  The implementation of the proposed optimal capacitor sizing 
and placement technique in interval mathematics is performed 
in the Matlab environment. The steps of the algorithm are 
summarized as follows:   
1) Run the load flow program for the original uncompensated 
feeder to calculate the voltages and currents at each bus using 
the Gauss-Seidel method. 
2) Assume an initial value for the single point estimate capacitor 
cost Kck as the average cost for all available standards for the 
studied feeder. 
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3) Let the input parameters (Kp, Ke, Kck and Lf) as an interval 
numbers with a realistic tolerance of ±5% of their single point 
estimates. 
4) Select a bus and apply (7), (11-13) to compute the interval 
capacitor size, the interval current capacitor, the interval 
maximum saving and the corresponding interval loss reduction 
respectively. Repeat this step for all buses in the feeder, except 
the source bus. 
5) Identify the candidate bus that has the highest interval cost 
saving (defined here as the bus with the highest upper bound in 
the interval cost saving) provided that the evaluated interval loss 
reduction and interval capacitor size are positive.  
6) Once a bus is identified as a candidate bus, determine all the 
standard capacitor sizes lying within the interval capacitor size 
at this bus. In case no standard size lies within the interval, then 
the one nearest to the interval is selected (i.e. the closest 
standard size to both the lower upper bounds of the interval). 
These procedures are applied at any one candidate bus selected. 
7) Perform the load flow calculations, for every single standard 
capacitor selected earlier, to ensure that no voltage violation 
takes place. If there is a voltage violation for one or more 
standard capacitor sizes, eliminate them from further 
consideration. If all the capacitor sizes result in voltage 
violation, then go to step 5 to select the next candidate bus. 
8) If there is no voltage violation, set the standard capacitor size, 
among the series of standard sizes in this interval, that provides 
the highest cost saving at this bus and take the corresponding 
exact capacitor cost value Kck.   
9) Repeat steps 4-8 to get the next capacitor bus and hence the 
sequence of buses to be compensated until it is found that there 
is no significant cost saving can be achieved by further capacitor 
placement. 
  The above algorithm can be looked upon as consisting of two 
nested loops. The first is a global one that loops over candidate 
buses to determine the interval capacitor values at all buses and 
the corresponding interval standard sizes. While the second is 
local as it searches for the optimal standard capacitor size, 
within an interval, at a specific candidate bus. 

SIMULATION RESULTS 

    To illustrate the numerical algorithm presented above, a test 
feeder, shown in Fig. 1, whose load and feeder data are listed in 
[7], was investigated. 
   The radial distribution feeder has 9 load buses and its rated 
substation voltage is 23kV. The estimated typical values for Kp, 
Ke and Lf are $168/kW, $0.3/kWh, and 0.5 respectively [3]. 
Commercially available capacitor sizes with $/kVAr are used in 
the analysis. 

 
Fig. 1 Nine-bus test feeder 

    Applying load flow solution on this feeder, before 
compensation, the cost function and the total power losses are 
$ 131675 and 783.8 kW respectively. The maximum and 
minimum bus voltage magnitudes are 0.9929 and 0.8375 p.u., 
where the voltage of the substation (bus number 0) is 
assumed to be 1 p.u., thus we have generally 0.8375≤Vi ≤1 

p.u. The following two cases, A and B, describe the 
compensation procedure for the test feeder; with the input 
parameters Kp, Ke, Kck and Lf all assumed to be interval 
numbers with realistic tolerances of ±5%. The computations 
are carried using the Intlab toolbox [8]. 

Case A 
  To demonstrate the application of the proposed algorithm, 
equations (7), (11-13) are employed to obtain the required 
outcomes.  
Table I shows the optimal size of a single located capacitor (Qc), 
the maximum cost saving (∆S) and corresponding loss reduction 
(∆P), for all buses, as interval outcomes. It is noticed that the 
bus that provides the highest upper bound in the cost saving is 
bus 5 (10,320$) which corresponds to the interval capacitor size 
[2309, 2838.4] KVAr. This identifies bus 5 as the first bus to be 
compensated. There are 3 standard sizes which fall within this 
range (i.e. 2400, 2550, 2700 KVAr). Computing the cost saving 
for each of the 3 standard sizes (provided no voltage violation 
occurs), it was found that the size of 2700KVAr provides the 
highest cost saving. The single- point estimates for the capacitor 
size, maximum cost saving and corresponding loss reduction at 
bus 5 were also computed and found to be 2560.4KVar, 
8839.6$, and 55.849kW respectively. It is clear that the 
estimated values of the outcomes are within the lower and upper 
bounds of the corresponding interval results. 

Table I  
Optimal sizes of singly located capacitors, cost savings and 

losses reduction 
Bus 
no.  

Qc (kVAr) ∆S ($) ∆P (kW) 

1 [2018.1, 3057.1] [170.16, 353.27] [3.4883, 6.0349] 
2 [2247.2, 3270.7] [237.57, 455.33] [4.1538, 6.937] 
3 [3568.2, 4437] [4049, 5664.6] [27.184, 40.741] 
4 [3415.8, 4215.2] [6860.9, 9452.8] [42.76, 63.979] 
5 [2309, 2838.4] [7548, 10320] [45.223, 67.63] 
6 [1997, 2453.4] [7236.8, 9882.3] [43.086, 64.431] 
7 [1561.9, 1917.2] [6729.8, 9173.7] [39.697, 59.358] 
8 [1100.6, 1349.5] [6213.1, 8450.7] [36.22, 54.156] 
9 [836.88, 1025.5] [5558.4, 7552.1] [32.218, 48.171] 

      
   Additional economic benefits may be realized using the above 
interval outcomes of the proposed technique. It furnishes 
utilities with alternatives of using any available standard 
capacitor size, lying within the interval capacitor size outcome, 
together with the associated cost saving. The maximum cost 
saving, achieved by the selection of any of these standard sizes, 
would certainly have a lower limit which corresponds to the 
lower bound of the interval outcome. Prior knowledge of such 
information could be of significance in utility planning. 
   When the compensation procedure was continued, after 
placing 2700KVAr of capacitor at bus 5, it was found that 
interval outcomes of [410.36, 504.67] KVAr, [1250.7, 1711.6] 
$, and [7.5283, 11.26] kW are obtained at bus 9. This leads to a 
standard set of 450KVAr at bus 9 to provide further cost saving 
and loss reduction. The final cost saving and loss reduction of 
[216.77, 327.51] $, and [1.99, 3.04]] kW were achieved by 
placing a third capacitor at bus 4. The interval capacitor size at 
bus 4 is [618.78, 799.62] KVAr leading to a standard size of 
750 KVAr. The proposed technique produces a total cost saving 
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and a total loss reduction of [9015.52, 12358.7] $ and [54.74, 
81.92] kW respectively. The estimated values of maximum cost 
saving and loss reduction are 10875 $ and 69.65 kW 
respectively by setting capacitor sizes of 2550, 450, and 900 
KVAr at bus 5, 9, and 4 respectively, Again, it is noted that the 
single-point values are within the lower and upper bounds of the 
interval outcomes.  
  Applying load flow solution on this feeder, after compensation, 
the maximum and minimum bus voltage magnitudes are found 
to be 0.9961 and 0.8825 p.u., i.e., there is an improvement in 
voltage profile of about 5% in the obtained minimum voltage.  

Case B 
  In view of the fact that the algebraic structure of interval 
mathematics is unlike that of common single point arithmetic, 
interval computations may, sometimes, produce conservative 
bounds [6]. In order to produce better bounds (i.e. sharp 
bounds) of the interval outcomes the term Kp’/ Kp” , appearing in 
the governing equations, is proposed to be of the following 
form: 

'
1

"

( 1)
2

1

ck k
e f k

ri i
p i

p p e

K VK T L
I RK

K K K T
=

− +

= +
+

∑
                  (15) 

Equation (15) is then used to modify (7) and (11-13). It is 
expected with such modification to get sharp bounds of the 
interval outcomes as the appearance of the interval input 
parameter Kp has been reduced [6]. 
   Table II shows the results of the modified algorithm and also 
its significance. For instance, at bus number 5, the earlier radius 
(half the interval width) of the capacitor size interval was 264.7. 
This value had led to the possible use of 3 standard capacitor 
sizes falling within that range. The corresponding radius of the 
interval numbers of the cost saving, and loss saving were 1385.8 
and 11.2, respectively. With the modified algorithm, the radius 
of the interval number of the capacitor size is reduced to 8.2467. 
This value would lead to the use of a single standard capacitor 
size within that range. The corresponding radius of the interval 
numbers of the cost saving, and loss saving after modification 
become 497.96 and 0.34904, respectively.  

Table II  
Optimal sizes of singly located capacitors, cost savings and 

losses reduction using the modified technique 
Bus 
no.  

Qc (kVAr) ∆S ($) ∆P (kW) 

1 [2230.1, 2766.3] [188.03, 319.67]  [4.0079, 5.3224] 
2 [2483.2, 2959.6] [262.52, 412.03] [4.7958, 6.0912] 
3 [3943.4, 4014.8] [4474.7, 5125.6] [33.039, 34.153] 
4 [3775, 3814.1] [7582.3, 8553.3] [52.295, 53.332] 
5 [2551.8, 2568.3] [8341.7, 9337.6] [55.5, 56.198] 
6 [2207, 2219.9] [7997.8, 8941.8] [52.908, 53.512] 
7 [1726.2, 1734.8] [7437.5, 8300.7] [48.787, 49.262] 
8 [1216.4, 1221.1] [6866.5, 7646.5] [44.563, 44.901] 
9 [924.88, 927.95] [6142.9, 6833.4] [39.66, 39.919] 
   
 Using the above results, a first standard capacitor size of 2550 
KVAr is placed at bus 5. When the procedure is repeated, a 
second interval outcomes of [479.8, 483] KVAr, [1552.9, 

1738.6] $, and [10.34, 10.47] kW, respectively, are achieved at 
bus 9. This will lead to a standard size of 450KVAr at this bus. 
Final cost saving and loss reduction of [352.61, 427.84] $, and 
[3.26, 3.53] kW are achieved by placing a third interval 
capacitor of [828.9, 868.7] KVAr at bus 4, leading to a standard 
capacitor size of 900 KVAr. The technique provides a total cost 
saving and total loss reduction of [10247.25, 11504.01] $ and 
[69.09, 70.19] kW respectively, when the above 3 standard 
capacitor sizes are installed. After compensation, the maximum 
and minimum bus voltage magnitudes are found to be 0.9961 
and 0.88196 p.u. These results show that the width of the 
interval outcomes of the maximum cost saving and loss 
reduction has been reduced and their corresponding estimated 
values, still fall within the modified interval outcomes.     
  
 CONCLUSIONS 
  The capacitor sizing and placement problem is modeled using a 
combined heuristic and interval mathematics method. Use of 
interval mathematics enables the integration of the effects of 
parameters’ uncertainties into the analysis and eliminates the 
need for many simulation runs. While catering for uncertainties, 
the method offers utilities with alternatives for selecting the 
standard capacitor sizes to be used and the associated costs to be 
saved. This enhances their ability to make informed decisions 
regarding installing capacitors for reactive power compensation 
in their distribution feeders. A procedure is devised in order to 
produce sharp bounds of the interval outcomes. Successful 
implementation of the method is described using a nine- bus test 
distribution feeder. 
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